Построение программной инфраструктуры кластера университета на основе технологий виртуализации XEN

Кориков А.М.*, ** Бойченко И.В. *, ** Назаркин Е.В.*

^{* -} Томский университет систем управления и радиоэлектроники (ТУСУР),

^{** -} Томский филиал Института вычислительных технологий СО РАН (ТФ ИВТ СО РАН)

Вычислительный кластер ТУСУР: старт

В 2008г., компанией «Т-платформы» в рамках программы «Инновационный университет» (2006-2008гг.), на базе кафедры Автоматизированных систем управления (АСУ) ТУСУР был развернут вычислительный кластер (ВК) с производительностью по Linpack = 0,5 TFLOPS

Состав ВК ТУСУРа:

Наименование	Кол-во
Управляющий узел (УУ)	1
Вычислительный узел (ВУ)	8
Сетевой коммутатор Gigabit Ethernet	1
Источник бесперебойного питания APC Smart	
10000 RT (7 кВт)	1
Монтажный шкаф NetShelter SX42U	1

Характеристики узлов ВК

Характеристики вычислительного узла (всего 8 в составе ВК):

Модель процессора	Intel Xeon 5300
Количество процессоров/ядер	2/8
Разрядность	64
Тактовая частота	2,3 ГГц
Оперативная память	8Гб (до 32Мб макс)
Жесткий диск	160Гб – 1шт.

Характеристики управляющего узла:

Модель процессора	Intel Xeon 5300		
Количество процессоров/ядер	2/8		
Разрядность	64		
Тактовая частота	2,3 ГГц		
Оперативная память	16Гб (до 64Мб макс.)		
Подсистема хранения	250Гб – 5 шт. (RAID5)		

Состав программного обеспечения ВК на момент развертывания (2008г)

ОС Головного узла: SuSE Linux Enterprise Server 10

ОС Вычислительных узлов: SuSE Linux 10 (урезанный вариант)

Инструментальное ПО: Intel C/C++, Fortran, Vtune, MPI 3.0

Библиотеки: Intel MKL, IPP

Пакетная обработка: PBS Torque

Общая стоимость ВК составила ~ 2,3 млн. руб. (включая расходы на построение инфраструктуры)

Проблема низкой востребованности в варианте «классического вычислительного кластера»

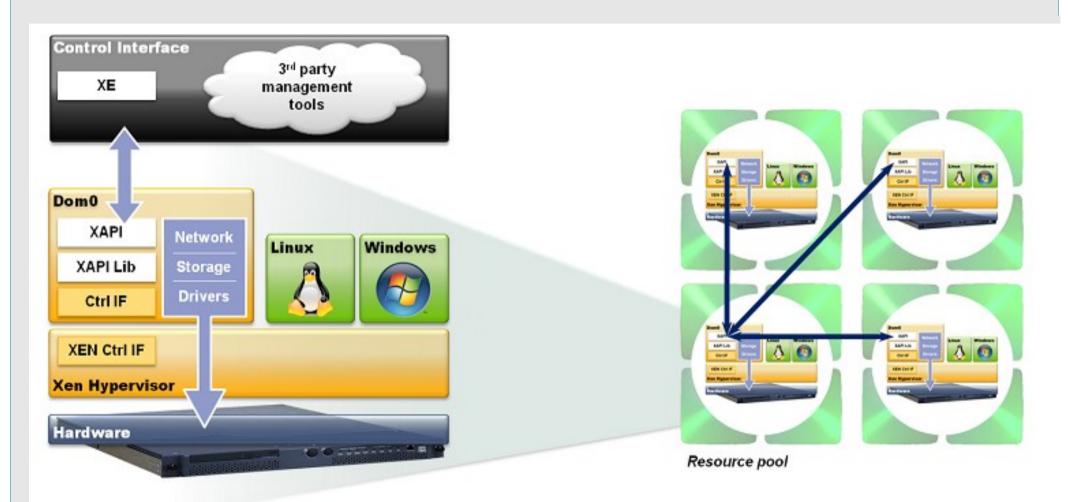
- 1. Потенциальные пользователи ВК (внутри университета это разработчики СВЧ технологий и приборов) ориентируются на готовые продукты, так как им некогда разрабатывать программное обеспечение (заказ, хоздоговор, контракт всегда предполагает ограничения по срокам и бюджету)
- 2. Лицензионные продукты для ВК (различные CAD\CAE приложения) очень дороги. Более того, в стратегических областях такие продукты не предоставляются в принципе, либо имеют схемы лицензирования, приводящие к чрезвычайно высокой стоимости НИР НИОКТР
- 3. Пользователи ориентированы на Windows, т.е. имеют ранее приобретенные продукты для этой ОС и опыт разработки преимущественно в этой ОС
- 4. Конкуренция со стороны технологий GPU

В результате, в первый год эксплуатации ВК в основном использовался в учебных целях и достаточно редко - для выполнения расчетов научного назначения.

Новые задачи

- 1. Индексация веб-контента для поисковых систем (Nutch, Hadoop)
- 2. Облачные вычисления на AppScale (открытый аналог Google App Engine)
- 3. Серверное окружение для НИРС и Группового проектного обучения (ГПО)
- 4. Развертывание учебных инфраструктур для изучения различного системного и прикладного ПО

Таким образом, возникли новые задачи, решать которые нужно было при условии обеспечения устойчивой работы, включая возможности «классического вычислительного кластера».


XEN-революция

Было принято решение о переходе на использование открытого программного продукта, обеспечивающего виртуализацию ресурсов кластера, с целью развертывания произвольного набора операционных систем, функционирующих изолированно.

Проект XEN был выбран как один из наиболее активно развивающихся в этой области.

Xen — кросс-платформенный гипервизор, разработанный в компьютерной лаборатории Кембриджского университета и распространяемый на условиях лицензии GPL. (http://xen.org)

Принципы построения ХЕЛ

Сетка развертывания контейнеров XEN на кластере ТУСУР

domain-0	hpc	as	nutch	win	other	TOTAL
master (2cores, 1Gb)	hpc-0 (2core, 2Gb)	as-0 (2cores, 1Gb)	nutch-0 (2cores, 2Gb)	win7-1 (4cores, 8Gb)		cores: 4real + 4HT, ram: 14Gb
node1 (1core, 512Mb)	hpc-1 (2core, 2Gb)	as-1 (2cores, 1Gb)	nutch-1 (2cores, 2Gb)	win2k8-1 (2cores, 1Gb)	www (2cores 1Gb)	cores: 4real + 4HT, ram: 8Gb
node2 (1core, 512Mb)	hpc-2 (2core, 2Gb)		nutch-2 (2cores, 2Gb)	xp-1 (2cores, 1Gb)		cores: 4real + 4HT, ram: 8Gb
node3 (1core, 512Mb)	hpc-3 (2core, 2Gb)		nutch-3 (2cores, 2Gb)	xp-2 (2cores, 1Gb)	gpo (2cores, 2Gb)	cores: 4real + 4HT, ram: 8Gb
node4 (1core, 512Mb)	Hpc-4 (2core, 2Gb)		nutch-4 (2cores, 2Gb)		embed1 (2cores, 1Gb)	cores: 4real + 4HT, ram: 8Gb
node5 (1core, 512Mb)	hpc-5 (2core, 2Gb)		nutch-5 (2cores, 2Gb)		embed2 (2cores, 1Gb)	cores: 4real + 4HT, ram: 8Gb
node6 (1core, 512Mb)	hpc-6 (2core, 2Gb)		nutch-6 (2cores, 2Gb)			cores: 4real + 4HT, ram: 8Gb
node7 (1core, 512Mb)	hpc-7 (2core, 2Gb)		nutch-7 (2cores, 2Gb)			cores: 4real + 4HT, ram: 8Gb
node8 (1core, 512Mb)	hpc-8 (2core, 2Gb)		nutch-8 (2cores, 2Gb)	win7-2 (1core, 1Gb) win2k8-2 (1core, 1Gb)		cores: 4real + 4HT, ram: 8Gb

Преимущества, полученные от внедрения XEN

- 1. Запуск множества операционных систем (не зависимо от используемого ядра) расширяет возможности использования кластера для различных ОС и соответствующих программных продуктов. Прямой эффект повышение КПД установки.
- 2. Гарантированная изоляция ОС. Исследователь может запускать и останавливать любой контейнер независимо от других. «Поломка» любого из контейнеров происходит изолировано. Прямой эффект серверная ферма для студенческих экспериментов и проектов мирно соседствует с регулярно действующими системами.
- 3. Потребление ресурсов ограничено заданными пределами. Позволяет выделять ресурсы в соответствии с приоритетом проекта.
- 4. Уменьшение времени и трудоемкости администрирования (установка, удаление, восстановление новых контейнеров, перенесение между физическими узлами, перезагрузка)

Перспективы развития

Переход на XEN Cloud Platform (XCP)?

XCP - готовое решение промышленного уровня, ориентированное на предоставление платформы виртуализации и сопутствующей инфраструктуры управления. Содержит набор готовых инструментов для управления инфраструктурой виртуальных контейнеров. Содержит подписанные windows-совместимые драйвера для виртуальных устройств, влияющих на конечную производительность контейнеров для ОС Windows.

Выводы

- 1. Применение систем виртуализации позволяет повысить КПД и устойчивость работы вычислительных кластеров.
- 2. Опыт внедрения и эксплуатации XEN на ВК ТУСУР можно считать положительным и рекомендовать к применению в других университетах и вычислительных лабораториях.